
The interest in MEMS technology for
RF and wireless applications stems
from the view that, because of its flexi-

bility, it can be exploited to overcome the limi-
tations exhibited by in-
tegrated RF devices1

and, in doing so, en-
ables circuits with new
levels of performance
not achievable other-
wise. Thus, the ulti-
mate goal in applying
RF MEMS is to propa-
gate the device-level
benefits all the way up
to the system level to

attain unprecedented levels of system perfor-
mance, as shown in Figure 1. In this section,

early examples of circuits exploiting MEMS
are presented.

MEMS Inductor-based Circuits
Inductors are key elements determining the

performance of tuned circuits, in particular,
impedance matching networks, low noise am-
plifiers and voltage-controlled oscillators
(VCO).2 Improving the gain, power dissipation
or phase noise of these circuits has, in turn, led
to incorporating MEMS-based on-chip induc-
tors. Perhaps the quintessential example of the
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improvements brought about by a
MEMS inductor is the pioneering
demonstration of a tuned CMOS RF
amplifier by Chang, Abidi and
Gaitan.3 Figure 2 shows a perfor-
mance comparison obtained from am-
plifiers, constructed with and without
the inductor’s substrate removed. Im-
provements of approximately 12 dB in
gain, and a factor of two higher center
frequency capability with the MEMS
inductor are evident. 

MEMS Varactor-based Circuits
Varactors are essential components

wherever circuit tunability is required
(for example, in variable matching cir-
cuits and VCOs). However, as the
move toward more compact form fac-
tors persists, and since good semicon-

ductor varactors are
incompatible with
conventional IC
processes, a number
of efforts to demon-
strate the perfor-
mance level enabled
by MEMS varactors
have been undertak-
en.4,5,6 A recent ex-
ample is that shown
by Dec and Su-
yama6 who, employ-
ing 1.4 pF parallel
plate capacitors with
a Q of 14 at 2 GHz

and fabricated in standard polysilicon
surface micromachining technology,
demonstrated a 2.4 GHz VCO with a
phase noise of –122 dBc/Hz at 1 MHz
offset from the carrier and a 3.4 per-
cent frequency tunability range over a
5 V tuning voltage.

MEM Switch-based Circuits
The excellent performance of pro-

totype MEMs switches — for in-
stance insertion loss and isolation of
approximately 0.1 dB and 50 dB, re-
spectively, from DC to 4 GHz7 — has
demonstrated their great potential for
replacing lossy and power hungry
semiconductor switches in numerous
applications, including T/R switches,
phaseshifters, switchable filters,
cross-bar/multiplexing, tunable an-
tennas and phased arrays. In this re-
gard, an X-band 4-bit phaseshifter
with an average insertion loss of only
1.4 dB and a return loss greater than
11 dB, has been recently demonstrat-
ed,8 as shown in Figure 3.

Micromachined Cavity
Resonator-based Circuits

It is well-known that the Q of a
cavity resonator is proportional to its
volume. Therefore, it is natural to
consider the utilization of cavity res-
onators in circuits and applications,
such as emerging millimeter-wave
commercial applications, whose fre-
quency and performance levels can-
not be met otherwise. These circuits
include oscillators, VCOs and filters.
A recent example9 is that of a 33.2
GHz MMIC oscillator stabilized by a
micromachined cavity, shown in Fig-
ure 4, which exhibited a phase noise
of –113 dBc/Hz at 1 MHz offset, an
18 dB improvement over its MMIC
free-running counterpart. 
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▲ Fig. 2  CMOS RF amplifier with
suspended MEMS inductor (a), the inductor’s
cross section (b) and its performance (c).

▲ Fig. 3  X-band four-bit phase shifter.

Fig. 4  VCO with micromachined resonator
cavity; (a) schematic and 
(b) top view of cavity oscillator assembled 
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Micromechanical
Resonator-based Circuits

At lower frequencies, cavity res-
onators become impractical due to
their excessively large dimensions.
Micromechanical resonators, in turn,
become very attractive because their
resonance frequency is proportional
to the square root of their stiffness-
to-mass ratio.1 Thus, considerable ef-
fort, most notably by Nguyen,10 con-
tinues to be spent on developing
MEM resonators using filters as
demonstration vehicles. Currently,
the resonance frequency capabilities
are well below 1 GHz (at 156 MHz)
and Qs measured under vacuum con-
ditions approach 9400.11

The design of MEM-resonator-
based filters essentially proceeds in
the electrical domain along conven-
tional lines, except that use is made
of electro-mechanical analogies to
cross over from the electrical proto-

type model to the mechanically real-
izable structure.1 Thus far, filters op-
erating at frequencies as low as a few
kilohertz to several megahertz have
been demonstrated. Figure 5 shows
the equivalent circuit12,13 and mea-
sured response of a two-resonator fil-
ter operating at 7.8 MHz.

Micromachined Transmission
Line-based Circuits

Transmission lines are rather ver-
satile components in RF and mi-
crowave electronics, as they are key
elements of many circuits and sys-
tems, in addition to embodying cir-
cuits in themselves. A number of
circuits that employ various types of
micromachined lines have been
demonstrated (namely, filters and
diplexers,14 and antennas).15 Pho-
tographs and performance of some
of these circuits are shown in Fig-
ure 6.

▲ Fig. 5  Two-resonator MEM filter (a), performance (b) and its circuit model (c).
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▲ Fig. 6  Fabricated micromachined 
K-band diplexer’s (a) top and (b) bottom
views and (c) frequency response, 
and (d) micromachined waveguide-based 
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RF/MICROWAVE MEMS SYSTEM
INTEGRATION AND NOVEL
ARCHITECTURES

With the increasing trend toward
more powerful portable wireless systems,
the need for integration is now more
acute than ever. Indeed, in applications
such as cellular, personal communica-
tions systems (PCS), wireless network-
ing, radar, LMDS, MMDS, steerable an-
tennas and satellite communications, the
need for reduced parts count, form fac-
tor and power consumption, and lighter
weight, remains paramount. One of the
promises of MEMS is that, through the
superior levels of RF and microwave
component performance it enables, great
strides can be made in the areas of sys-
tem integration and novel architectures,
directed at fulfilling these needs.

Approaches for RF MEMS Insertion 
in Wireless Systems

Two approaches to RF MEMS insertion are possible —
bottoms-up and top-down considerations. In the bottoms-
up approach, one would proceed by employing straightfor-
ward or direct component replacement as dictated by an
established system architecture. In the top-down scenario,
one would begin by devising a system architecture, not
prejudiced by the usual limitations imposed by conven-
tional RF components, that would exploit to the highest
degree possible their RF MEMS realizations.

A typical example of the bottoms-up approach is shown
in Figure 7 by a conventional transceiver architecture. In
this context, it is clear that the off-chip passives compo-
nents, switches, filters, VCOs, mixers, oscillators and
diplexers are all candidates for direct replacement by
their MEMS counterparts. Another example of the bot-
toms-up approach would be that of a phased array anten-
na (PAA) system. Indeed, since MEM switches require
nano-joule-type switching energy, and virtually zero
standby power, it is no longer a fantasy to envision PAAs

containing orders of magnitude more el-
ements than currently feasible, by the
direct replacement of the conventional
switches.

On the other hand, a number of pro-
posals, predicated upon the top-down
approach, have already appeared in lit-
erature,16,17 with particular emphasis on
transceivers. For example, Larson has
proposed two receiver concepts shown
in Figure 8.16 One employs a MEMS-
based tunable front-end filter aimed at
improving integrability through the
drastic lowering of the IF enabled by
the filter. The other receiver employs an
acoustic resonant IF filter bank aimed at
simplifying system realization by elimi-
nating the need for a tunable first LO,
that is, by replacing it with a fixed LO
and exploiting the switchable filter bank
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to affect IF band selection. Along the same lines, Nguyen
proposed a front-end architecture,17 in which band selec-
tion is accomplished by the orchestrated action of a
switched matching network and a massively parallel bank
of MEMs filters shown in Figure 9.

Enabling The Next Wave:
Concurrent System Design

Without an appropriate environment, the design and
timely implementation and time-to-market deployment of
MEMS-based systems would be virtually hopeless, due to
the design dimensions added by the multi-physics/multi-
domain nature of MEMS devices. Thus, MEMS design
tools are essential to the successful commercialization of
MEMS-based RF/wireless systems.

CAD tools18 provide an environment where virtually
all aspects of MEMS device design and production, from
first principles physical simulation to system-level device
models to packaging to manufacturing process feasibility,
can be concurrently addressed to avoid last-minute sur-
prises.

A typical design flow for an RF MEMS device is shown
in Figure 10. From mechanical and electrical specifica-
tions, the device is designed iteratively19 until both sets of
specifications are satisfied. Within the iteration loops, the
software may be used to explore, and correct for, the im-
pact of a number of potential influences on device perfor-
mance/yield, such as package stress and strain state, man-
ufacturing process or temperature variability, and her-
meticity. The design process ends with an S-parameter
file and/or a behavioral reduced order model for subse-
quent utilization in a circuit/system simulator.

CONCLUSION
In this two-part article, a succinct tutorial on the field of

MEMS with particular emphasis on their ability to enable
the breakthroughs that will launch the next class of RF/mi-
crowave wireless systems applications was presented. In Part
I, MEMS-based RF devices, such as inductors, varactors,
switches, resonators and transmission lines, their fabrication,
packaging and a CAD design methodology, were progres-

sively introduced. In Part II, some of their most important
circuit and system applications, and possible approaches for
their insertion, were described. In conclusion, the need for a
concurrent system design environment, such as that provid-
ed by currently available software, was suggested, and a typi-
cal RF MEMS device design flow that could exploit such an
environment was presented. ■
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